

LIQUID SCINTILLATION

- MEASURING PROCEDURES, NEW DEVELOPMENTS -

MOEBIUS Siegurd ERAT Stephan MAYER Klaus MOEBIUS Rolf MOEBIUS Tiana SANTIAGO Luz WENDEL Juergen WISSER Sascha

This work is subject to copyright. Any kind of reproduction or translation, even partial, is permitted only with the consent of the authors.

The results of this book are based on literature compilations and experimental investigations to the best of our knowledge. The authors explicitly point out that in the implementation of the proposals and recommendations of this book the individual circumstances should be taken into account. "Good Laboratory Practice" and the state of the art in analytical quality management is a prerequisite for the reliability of analytical results.

The authors, DGFS eV and Karlsruhe Institute of Technology KIT exclude any liability for damages which may arise from the use of the information in this book.

Copyright by Karlsruhe Institute of Technology – Campus North Hervorgegangen aus dem Zusammenschluss des Forschungszentrums Karlsruhe GmbH und der Universität Karlsruhe (TH) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen

Printed in Germany

ISBN 978-3-923704-87-3 Available as well as CD-ROM

PREFACE

This handbook on Liquid Scintillation (LS) presents a compilation of the most important radioanalytical procedures applying this modern measuring technology. It serves as a manual for the determination of radioisotopes by LS. New developments in this context are described with emphasis on our research work on natural radionuclides published recently in two other handbooks and in the Proceedings of the "International Conferences on Liquid Scintillation Spectrometry" LSC 2001, 2005, 2008, 2010 and 2013.

Several radioanalytical procedures for the environmental survey have been published in Germany and worldwide. However, only a few of them really concern the liquid scintillation technology – wrongfully. Liquid Scintillation Spectrometry (LSS) presents an effective, efficient and universal method for the measurement of radionuclides, especially with the recent developments of extractive sample preparation, α/β –Pulse Shape Discrimination and TDCR for absolute counting. It avoids a tedious and time-consuming sample preparation.

Modern LSS is presented in the first part of the handbook together with a summary of practical equipment calibration techniques. Measuring procedures include to a major part natural radionuclides like Radon and Radium. Additional emphasis is dedicated to radionuclides from nuclear fission activities, like Sr-isotopes by LS and Cerenkov counting. Analytical methods include also Fe-, Ni- and Ca-isotopes as present in decommissioning activities. Due to the present importance a chapter on procedures for NORM has been introduced.

Quality assurance aspects like method validation with uncertainty budget and error analysis are discussed in the last part. A comprehensive literature survey facilitates further studies.

The request of the "LSC-Handbuch" edited in 2008 in German language, and recently in 2012 in English, as well as the high interest from participants of international training activities for IAEA, KIT Karlsruhe, SPERA and OAP was the motivation for DGFS e.V. to publish these measuring procedures.

As constitutional aim of the German Society for Liquid Scintillation Spectrometry DGFS e.V. the authors wish that this handbook would further spread the modern and future prospective methodology of Liquid Scintillation Spectrometry.

LIQUID SCINTILLATION

- MEASURING PROCEDURES, NEW DEVELOPMENTS -

Summary

The most important radioanalytical procedures for Liquid Scintillation (LS) as a modern measuring technology are compiled in a practice-oriented way. The methods cover α/β -discrimination, extractive scintillation for both natural radionuclides as well as activation/fission nuclides resulting from the nuclear fuel cycle.

Following an introduction of the present state of the art of LS technology, calibration procedures like quench correction, α/β -pulse shape discrimination and working procedures for dual and multi labeled samples are presented.

The measuring procedures of the main part include natural radionuclides with special emphasis on rapid methods for Radon, ^{226,228}Ra and ²¹⁰Pb in water samples, satisfying the worldwide request for drinking water analysis. An excursion to NORM materials in phosphogypsum and in the oil and gas industries follows.

Procedures for the determination of radionuclides in the nuclear fuel cycle address to 89,90 Sr fission nuclides, from conventional to recent TDCR Cerenkov counting (89 Sr and 90 Y), but includes as well 241 Pu as low β -energy built up product. The determination of 55 Fe, 63 Ni and 41,45 Ca isotopes as EC and low energetic β -emitting activation products in decommissioning activities includes their comprehensive sample preparation.

The part on Radiation Protection covers effluent measurements for Tritium and Radiocarbon as well as laboratory contamination control.

The last chapter of this manual is dedicated to quality assurance aspects as the calculation of lower limits of detection and the uncertainty budget.

A comprehensive literature survey facilitates this handbook to apply further studies on modern Liquid Scintillation Spectrometry.

Contents

1.	Introduction	5
1.1.	The Liquid Scintillation Process	5
1.2.	Quenching	7
1.3.	Separation of $\alpha\text{-}$ and $\beta\text{-}\gamma\text{-}radiation$ by Extractive Scintillators and Pulse Shape Discrimination	10
1.4.	Sample Preparation for α/β -Pulse Shape Discrimination	12
2.	Measuring Procedures	14
2.1.	Instrument Calibration Procedures	16
	2.1.1. Quench Correction Curves	16
	2.1.2. Dual Labeling	18
	2.1.3. Calibration for α/β -discrimination	21
2.2.	Natural Radionuclides	24
	2.2.1. Aqueous Samples	25
	2.2.1.1. Gross α/β Survey in Drinking Water	25
	2.2.1.2. Radon by Extraction	27
	2.2.1.3. Radon by Gel Counting	30
	2.2.1.4. Ra-226 through Radon Emanation	33

2.2.1.5. Radium by Derived Radium RAD Disk Method	35
2.2.1.6. Quick Method for Pb-210 and Other Key Nuclides	
in Drinking Water	40
2.2.1.7. Uranium Isotopes by Extractive Scintillation	45
2.2.1.8. Tritium by Distillation	47
2.2.1.9. Sea Water Samples	48
2.2.2. NORM Samples	51
2.2.2.1. NORM in Phosphogypsum	51
2.2.2.2. Rn in Crude Oil and Oil Fractions	56
2.2.4.3. Radium Isotopes and Pb-210 in Scale, Deposits and	
Production Water	58
2.3. Radionuclides from Nuclear Fission Activities	60
2.3.1. Strontium by Strontium RAD Disk	60
2.3.2. Sr-90 and Pb-210 by Extraction Chromatography	63
2.3.3. Strontium in Milk	65
2.3.4. Sr-89/90 by Cerenkov Counting	67
2.3.5. Strontium Isotopes (Sr-89/Sr-90 and Sr-90/Y-90) by TDCR	
Cerenkov Counting	71
2.3.6. Fe-55 by Extraction Chromatography	74
2.3.7. Ni-63 by Extraction Chromatography	75
2.3.8. Fe-55 and Ni-63 in Radioactive Waste	77

	2.3.9. Ca-Isotopes in Biological Shield	80
	2.3.10. Fe-55 and Ca-41 in Decommissioning Activities by TDCR-LSC	84
	2.3.11. Pu-241 in Presence of Other Plutonium Isotopes (LS-α-Spectrometry)	87
	2.3.12. Multiple Radionuclide Analysis	90
2.4. F	Radiation Protection	93
	2.4.1. Radon in Air	93
	2.4.1.1. Enrichment in Organic Cocktail	93
	2.4.1.2. Adsorption on Active Carbon 'PicoRad'	95
	2.4.2. Tritium in Off-gas	97
	2.4.3. Radiocarbon in Off-gas	100
	2.4.4. Contamination Control by Swipe Assays	102
3. Qu	nality Assurance and Uncertainty Budget	106
3.1.	Uncertainty Budget in LS Spectrometry	106
3.2.	Lower Limit of Detection	109
3.3.	Method Evaluation and Validation	110

4. Literature	114
	101
Annex 1: Abbreviations	121
Annex 2: List of Figures and Tables	122
Annex 3: Recent International Conferences on Advances in Liquid Scintillation	
Spectrometry	124

2.2.1.5. Radium by Derived Radium RAD Disk Method

Introduction

This method is suitable for all Radium isotopes (²²⁶Ra, ²²⁸Ra and ²²⁴Ra). The decay and ingrowth properties of ²²⁶Ra and its occurrence is desribed in chapter 2.2.1.4. in detail.

²²⁸Ra is a low energetic β-emitter with 39 keV maximum energy (56%), but also possesses a 15.5 keV component of lower intensity (35%) [MAGILL 1999]. It is normally present in much lower concentrations compared to 226 Ra. However, in water reservoirs of Thorium containing geological formations such as e.g. Wismut area, Saxonia, Kerala/South India, Sri Lanka, South Thailand, Bahia/North Brazil or in the south of Madagascar, it has been found in much higher concentrations compared to 226 Ra.

The equilibrium conditions with its progenies are substantially more complex. According to

²²⁸Ra
$$\xrightarrow{\beta^{-}}$$
 ²²⁸Ac $\xrightarrow{\beta^{-}}$ ²²⁸Th $\xrightarrow{\alpha}$ ²²⁴Ra $\xrightarrow{}$ 1.9a

 228 Ra forms a variety of α -emitting daughter nuclides.

Its determination of is more challenging because of its low energetic β -radiation and the influences of the short-lived α - and high energetic β -emitting daughter nuclides.

²²⁸Ra with $3x10^{-5}$ Sv/Bq [MAGILL 1999] (ICRP-68 recommends $6.7x10^{-7}$ Sv/Bq) is estimated as radiobiological more hazardous due to the various α-emitting daughter nuclides in partial equilibrium. In order to limit the effective dose to 0.1 mSv/a, a maximum value of 20 mBq/L in drinking and mineral water for small children should not be exceeded.

The method described here is applicable to all Radium isotopes. It makes use of selective extraction disks and the complexing properties of Radium with EDTA.

Solid Phase Extraction Disks are commercially available for Ra, Sr, Cs and Tc from 3M EMPORE Company (St. Paul, USA) (fig. 14c). Radium RAD Disk filters are made of thin membranes which selectively extract Radium and Lead because of their ionic size. 21-crown-7-ether as extractive agent (see fig. 21) is bound onto a stable inert material of polytetrafluoro-ethylene (PTFE). Water samples are extracted through the filter disk and eluted with EDTA [SMITH et al. 1997]. According to the recommendations by 3M, the solution should be stored air-tight for equilibration of ²²⁶Ra with ²²²Rn. After 20 to 30 days ²²²Rn can be flushed into a ZnS cell and is determined through its α-scintillations.

For ²²⁸Ra determination, the loaded filter is stored for 1 to 20 hours. The ingrowing ²²⁸Ac is then eluted from the filter by diluted HNO₃, evaporated on a plate and measured in a proportional counter [EPA 1980].

The main advantage of the Radium selective filter is the enrichment of Radium from water samples of up to 3 to 5 L volume. The procedure prescribed by the manufacturer [3 M EMPORE 1998] is unsuitable for fast results and in-situ analysis because of the long storage time and the laboratory intensive solid scintillation measurement.

Following our investigations [MÖBIUS et al. 2002], we recommend a simplified and rapid modification. After filtration Radium is eluted drop wise with a small amount of alkaline EDTA. After the addition of a gelating cocktail (OptiPhase HiSafe III), the eluate is measured directly in an α/β -LS spectrometer. ²²⁶Ra can be quantified in the α -channel and ²²⁸Ra simultaneously in the β -channel (fig. 16).

We have also used the method for in-situ water analysis with a filter cartridge (fig. 14 b). The sample is filtered into a syringe, eluted immediately and measured with the mobile HIDEX Triathler instrument.

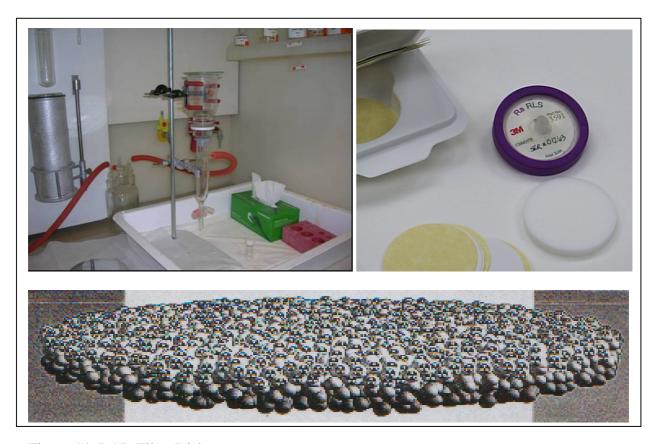


Figure 14: RAD Filter Disk

- (a) Filtering apparatus
- (b) Filter cartridge with Radium filter
- (c) Filter material (enlarged)

Materials and Equipment

- Radium RAD DiskFilter (3M Empore, FCI Consulting & Instruments)
- HNO₃ (conc. 2M, 0.5M)
- 0.25M EDTA solution alkaline

- OptiPhase HiSafe III
- Filtering apparatus (for 48mm filter diameter) with recipient
- Sucking finger (50 mL)

Procedure [MÖBIUS et al. 2002]

- (1) 3 L water sample are acidified with concentrated HNO₃ to 2M (130 mL 12 M HNO₃ per Liter of water).
- (2) After preconditioning of the Radium RAD Disk with 20 mL 2 M HNO₃ the water sample is extracted by filtration (< 50 mL/min).
- (3) The filter is washed with 10 mL 0.5 M HNO₃, with further 10 mL distilled water and then sucked sharply.
- (4) The Radium isotopes are eluted from the filter by drop wise addition of 5 ml 0.25 M alkaline EDTA (twice for quality control!) and collected in a small recipient.
- (5) The 5 mL sample is mixed with 16 mL of OptiPhase HiSafe III cocktail in a glass vial (clear gel!) and is stored for 3 hours (decay of ²¹⁴Pb) before measurement.
- (6) 226 Ra is quantified from the α -PSD-channel and 228 Ra from the low energetic β channel.

Remark: Do not run the filter dry during extraction!

Modified Procedure for better sensitivity

- (1') The Radium isotopes are eluted dropwise with 12 mL 0.25M EDTA alkaline and then covered with 9 mL organic cocktail (BetaPlate Scint or Toluene Scint).
- (2') The vial is closed and stored with the cover downwards in a refrigerator.
- (3') After equilibration with ²²²Rn (minimum 20 days) the vial is shaken vigorously (time t_0), stored for another 3 hours and then measured in the α -channel.

Evaluation

Measurement of the EDTA eluate directly:

The activity concentration A_C of the water sample is calculated by

$$A_{C} = \frac{R_{N} * 1000}{\epsilon * \eta * V}$$
 [Bq/L]

whereas

 $R_N = Net rate (cps)$

 ε = Measuring efficiency (90 to 100 % for ²²⁶Ra)

 η = Elution yield (95 to 100 % under optimized conditions)

V = Sample volume (3 L) f(t) = Correction factor for ²²²Rn ingrowth between elution and measurement in case of ²²⁶Ra

 $f(t) = 1 / 3(1-\exp-(t_1/T_{1/2}^{222}Rn)*ln2))$