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PREFACE

This handbook on Liquid Scintillation (LS) presents a compilation of the most important 
radioanalytical procedures applying this modern measuring technology. It serves as a manual 
for the determination of radioisotopes by LS. New developments in this context are described 
with emphasis on our research work on natural radionuclides published recently in two other 
handbooks and in the Proceedings of the "International Conferences on Liquid Scintillation 
Spectrometry” LSC 2001, 2005, 2008, 2010 and 2013.

Several radioanalytical procedures for the environmental survey have been published in 
Germany and worldwide. However, only a few of them really concern the liquid scintillation 
technology – wrongfully. Liquid Scintillation Spectrometry (LSS) presents an effective, 
efficient and universal method for the measurement of radionuclides, especially with the 
recent developments of extractive sample preparation, α/β−Pulse Shape Discrimination and 
TDCR for absolute counting. It avoids a tedious and time-consuming sample preparation.

Modern LSS is presented in the first part of the handbook together with a summary of 
practical equipment calibration techniques. Measuring procedures include to a major part 
natural radionuclides like Radon and Radium. Additional emphasis is dedicated to 
radionuclides from nuclear fission activities, like Sr-isotopes by LS and Cerenkov counting. 
Analytical methods include also Fe-, Ni- and Ca-isotopes as present in decommissioning 
activities. Due to the present importance a chapter on procedures for NORM has been 
introduced.

Quality assurance aspects like method validation with uncertainty budget and error analysis 
are discussed in the last part. A comprehensive literature survey facilitates further studies.

The request of the “LSC-Handbuch” edited in 2008 in German language, and recently in 2012 
in English, as well as the high interest from participants of international training activities for 
IAEA, KIT Karlsruhe, SPERA and OAP was the motivation for DGFS e.V. to publish these 
measuring procedures.

As constitutional aim of the German Society for Liquid Scintillation Spectrometry DGFS e.V. 
the authors wish that this handbook would further spread the modern and future prospective 
methodology of Liquid Scintillation Spectrometry.  
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Summary

The most important radioanalytical procedures for Liquid Scintillation (LS) as a modern 

measuring technology are compiled in a practice-oriented way. The methods cover α/β-

discrimination, extractive scintillation for both natural radionuclides as well as

activation/fission nuclides resulting from the nuclear fuel cycle. 

Following an introduction of the present state of the art of LS technology, calibration 

procedures like quench correction, α/β−pulse shape discrimination and working procedures 

for dual and multi labeled samples are presented.

The measuring procedures of the main part include natural radionuclides with special 

emphasis on rapid methods for Radon, 226,228Ra and 210Pb in water samples, satisfying the 

worldwide request for drinking water analysis. An excursion to NORM materials in 

phosphogypsum and in the oil and gas industries follows.

Procedures for the determination of radionuclides in the nuclear fuel cycle address to 89,90Sr

fission nuclides, from conventional to recent TDCR Cerenkov counting (89Sr and 90Y), but 

includes as well 241Pu as low β-energy built up product. The determination of 55Fe, 63Ni and 
41,45Ca  isotopes as EC and low energetic β-emitting activation products in decommissioning 

activities includes their comprehensive sample preparation.  

The part on Radiation Protection covers effluent measurements for Tritium and Radiocarbon 

as well as laboratory contamination control.

The last chapter of this manual is dedicated to quality assurance aspects as the calculation of 

lower limits of detection and the uncertainty budget.

A comprehensive literature survey facilitates this handbook to apply further studies on 

modern Liquid Scintillation Spectrometry.
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2.2.1.5. Radium by Derived Radium RAD Disk Method

Introduction

This method is suitable for all Radium isotopes (226Ra, 228Ra and 224Ra).
The decay and ingrowth properties of 226Ra and its occurrence is desribed in chapter 2.2.1.4. 
in detail. 

228Ra is a low energetic β-emitter with 39 keV maximum energy (56%), but also possesses a 
15.5 keV component of lower intensity (35%) [MAGILL 1999]. It is normally present in much 
lower concentrations compared to 226Ra. However, in water reservoirs of Thorium containing 
geological formations such as e.g. Wismut area, Saxonia, Kerala/South India, Sri Lanka, 
South Thailand, Bahia/North Brazil or in the south of Madagascar, it has been found in much 
higher concentrations compared to 226Ra. 

The equilibrium conditions with its progenies are substantially more complex. According to

                  β- β- α
228Ra                      228Ac                  228Th                224Ra   
                5.7a                     6.1h                   1.9a

212Po   α  0.3 µs
α α     α β- β-  61m      

224Ra  220Rn              216Po           212Pb 212Bi              208Pb
        3.6d                   56s              0.15s            10.6h             α β-

 25m    208Tl     3m

228Ra forms a variety of α-emitting daughter nuclides.
Its determination of is more challenging because of its low energetic β-radiation and the 
influences of the short-lived α- and high energetic β-emitting daughter nuclides.
228Ra with 3x10-5 Sv/Bq [MAGILL 1999] (ICRP-68 recommends 6.7x10-7 Sv/Bq) is estimated 
as radiobiological more hazardous due to the various α-emitting daughter nuclides in partial 
equilibrium. In order to limit the effective dose to 0.1 mSv/a, a maximum value of 20 mBq/L 
in drinking and mineral water for small children should not be exceeded.

The method described here is applicable to all Radium isotopes. It makes use of selective 
extraction disks and the complexing properties of Radium with EDTA.
Solid Phase Extraction Disks are commercially available for Ra, Sr, Cs and Tc from 3M 
EMPORE Company (St. Paul, USA) (fig. 14c). Radium RAD Disk filters are made of thin 
membranes which selectively extract Radium and Lead because of their ionic size. 21-crown-
7-ether as extractive agent (see fig. 21) is bound onto a stable inert material of poly-
tetrafluoro-ethylene (PTFE). Water samples are extracted through the filter disk and eluted 
with EDTA [SMITH et al. 1997]. According to the recommendations by 3M, the solution 
should be stored air-tight for equilibration of 226Ra with 222Rn. After 20 to 30 days 222Rn can 
be flushed into a ZnS cell and is determined through its α-scintillations.
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For 228Ra determination, the loaded filter is stored for 1 to 20 hours. The ingrowing 228Ac is 
then eluted from the filter by diluted HNO3, evaporated on a plate and measured in a 
proportional counter [EPA 1980].
The main advantage of the Radium selective filter is the enrichment of Radium from water 
samples of up to 3 to 5 L volume. The procedure prescribed by the manufacturer [3 M 
EMPORE 1998] is unsuitable for fast results and in-situ analysis because of the long storage 
time and the laboratory intensive solid scintillation measurement.

Following our investigations [MÖBIUS et al. 2002], we recommend a simplified and rapid 
modification. After filtration Radium is eluted drop wise with a small amount of alkaline 
EDTA. After the addition of a gelating cocktail (OptiPhase HiSafe III), the eluate is measured 
directly in an α/β-LS spectrometer. 226Ra can be quantified in the α-channel and 228Ra 
simultaneously in the β-channel (fig. 16).
We have also used the method for in-situ water analysis with a filter cartridge (fig. 14 b). The 
sample is filtered into a syringe, eluted immediately and measured with the mobile HIDEX 
Triathler instrument. 

Figure 14: RAD Filter Disk 
(a) Filtering apparatus           (b) Filter cartridge with Radium filter  
(c) Filter material (enlarged)

Materials and Equipment

- Radium RAD DiskFilter (3M Empore, FCI Consulting & Instruments)
- HNO3 (conc. 2M, 0.5M)
- 0.25M EDTA solution alkaline
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- OptiPhase HiSafe III
- Filtering apparatus (for 48mm filter diameter) with recipient 
- Sucking finger (50 mL)

Procedure [MÖBIUS et al. 2002]

(1) 3 L water sample are acidified with concentrated HNO3 to 2M (130 mL 12 M 
HNO3 per Liter of water).
(2) After preconditioning of the Radium RAD Disk with 20 mL 2 M HNO3 the 
water sample is extracted by filtration (< 50 mL/min). 
(3) The filter is washed with 10 mL 0.5 M HNO3, with further 10 mL distilled water 
and then sucked sharply.
(4) The Radium isotopes are eluted from the filter by drop wise addition of 5 ml 
0.25 M alkaline EDTA (twice for quality control!) and collected in a small recipient. 
(5) The 5 mL sample is mixed with 16 mL of OptiPhase HiSafe III cocktail in a 
glass vial (clear gel!) and is stored for 3 hours (decay of 214Pb) before measurement.
(6) 226Ra is quantified from the α-PSD-channel and 228Ra from the low energetic β-
channel. 

Remark: Do not run the filter dry during extraction!

Modified Procedure for better sensitivity

(1’) The Radium isotopes are eluted dropwise with 12 mL 0.25M EDTA alkaline
and then covered with 9 mL organic cocktail (BetaPlate Scint or Toluene Scint).

(2’) The vial is closed and stored with the cover downwards in a refrigerator.
(3’) After equilibration with 222Rn (minimum 20 days) the vial is shaken vigorously

(time t0), stored for another 3 hours and then measured in the α-channel.

Evaluation

Measurement of the EDTA eluate directly:

The activity concentration AC of the water sample is calculated by

         RN * 1000
AC = --------------- * f(t)             [Bq/L]

ε ∗ η * V

whereas

RN  = Net rate (cps)
ε = Μeasuring efficiency (90 to 100 % for 226Ra)
η  =  Elution yield (95 to 100 % under optimized conditions)
V   = Sample volume (3 L)
f(t) = Correction factor for 222Rn ingrowth between elution and measurement in case of 226Ra
f(t) = 1 / 3(1-exp-(t1/T1/2

222Rn)* ln2))
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